Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem (Oxf) ; 4: 100073, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35415694

RESUMO

Sugar beet is vulnerable to rhizomania as the most destructive viral disease. Two selected events of transgenic sugar beet carrying cassettes inducing RNA silencing mechanism, 219-T3:S3-13.2 (S3) and 6018-T3:S6-44 (S6), were shown to inhibit propagation of Beet Necrotic Yellow Vein Virus, the causative agent. As a method for signifying the substantial equivalence, we analyzed the levels of some metabolites through LC-MS in order to demonstrate possible unintended changes in the leaves of the transgenic events. There was no significant difference in the concentrations of examined key metabolites but cis-aconitate and fructose-1,6-bisphosphatase which were decreased in S3. Also, ATP was reduced in both genetically modified sugar beets. Among free amino acids, only glycine level in S6 was increased compared to the wild plant, while the production levels of 5 and 12 ones were increased in S3 compared to S6 event and the wild type plants, respectively.

2.
Iran J Microbiol ; 6(4): 285-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25802714

RESUMO

BACKGROUND AND OBJECTIVES: Azotobacter is a diazotroph bacterium reported to possess various plant growth-promoting characteristics.The aim of this study was to isolate Azotobacter strains capable of fixing nitrogen and effectively hydrolyzing both organic and inorganic Pi compounds. MATERIALS AND METHODS: In this study, soil samples collected from a diverse range of slightly alkaline soil types were screened for Azotobacter isolates. The inorganic and organic phosphate solubilization potentials of twenty competent phosphate solubilizing Azotobacter isolates were assessed.Variations were noted in the solubilization potentials. RESULT: Three isolates, identified as Azotobacter vinelandii strains O2, O4 and O6, were able to fix atmospheric N2 effectively. The nitrogenase activity of these isolates ranged between 158.6 and 326.4 C2H4h(-1)vial(-1) (ethylene). Bacterial growth rates and phosphate solubilization activities were measured quantitatively under various environmental conditions. A close association was evident between phosphate solubilizing ability and growth rate as an indicator of active metabolism. All three phosphate solubilizing bacteria (PSB) were able to withstand temperature as high as 45°C, high concentration of NaCl (upto 5%) and a wide range of initial pH from 5 to 10 while hydrolyzing phosphate compounds actively. CONCLUSION: Azotobacter vinelandii strains O2, O4 and O6 are superior candidates for biofertilizers that may result in the reduction of chemical nitrogen and phosphate fertilizers leading to increase crop production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...